This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwrcl.a | |- A = ( Arrow ` C ) |
|
| arwhoma.h | |- H = ( HomA ` C ) |
||
| Assertion | arwhoma | |- ( F e. A -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | |- A = ( Arrow ` C ) |
|
| 2 | arwhoma.h | |- H = ( HomA ` C ) |
|
| 3 | 1 2 | arwval | |- A = U. ran H |
| 4 | 3 | eleq2i | |- ( F e. A <-> F e. U. ran H ) |
| 5 | 4 | biimpi | |- ( F e. A -> F e. U. ran H ) |
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 1 | arwrcl | |- ( F e. A -> C e. Cat ) |
| 8 | 2 6 7 | homaf | |- ( F e. A -> H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
| 9 | ffn | |- ( H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) -> H Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 10 | fnunirn | |- ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
|
| 11 | 8 9 10 | 3syl | |- ( F e. A -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
| 12 | 5 11 | mpbid | |- ( F e. A -> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) |
| 13 | fveq2 | |- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
|
| 14 | df-ov | |- ( x H y ) = ( H ` <. x , y >. ) |
|
| 15 | 13 14 | eqtr4di | |- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
| 16 | 15 | eleq2d | |- ( z = <. x , y >. -> ( F e. ( H ` z ) <-> F e. ( x H y ) ) ) |
| 17 | 16 | rexxp | |- ( E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) <-> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
| 18 | 12 17 | sylib | |- ( F e. A -> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
| 19 | id | |- ( F e. ( x H y ) -> F e. ( x H y ) ) |
|
| 20 | 2 | homadm | |- ( F e. ( x H y ) -> ( domA ` F ) = x ) |
| 21 | 2 | homacd | |- ( F e. ( x H y ) -> ( codA ` F ) = y ) |
| 22 | 20 21 | oveq12d | |- ( F e. ( x H y ) -> ( ( domA ` F ) H ( codA ` F ) ) = ( x H y ) ) |
| 23 | 19 22 | eleqtrrd | |- ( F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 24 | 23 | rexlimivw | |- ( E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 25 | 24 | rexlimivw | |- ( E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
| 26 | 18 25 | syl | |- ( F e. A -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |