This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwval.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| arwval.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | ||
| Assertion | arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwval.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| 2 | arwval.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 3 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Homa ‘ 𝑐 ) = ( Homa ‘ 𝐶 ) ) | |
| 4 | 3 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Homa ‘ 𝑐 ) = 𝐻 ) |
| 5 | 4 | rneqd | ⊢ ( 𝑐 = 𝐶 → ran ( Homa ‘ 𝑐 ) = ran 𝐻 ) |
| 6 | 5 | unieqd | ⊢ ( 𝑐 = 𝐶 → ∪ ran ( Homa ‘ 𝑐 ) = ∪ ran 𝐻 ) |
| 7 | df-arw | ⊢ Arrow = ( 𝑐 ∈ Cat ↦ ∪ ran ( Homa ‘ 𝑐 ) ) | |
| 8 | 2 | fvexi | ⊢ 𝐻 ∈ V |
| 9 | 8 | rnex | ⊢ ran 𝐻 ∈ V |
| 10 | 9 | uniex | ⊢ ∪ ran 𝐻 ∈ V |
| 11 | 6 7 10 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 ) |
| 12 | 7 | fvmptndm | ⊢ ( ¬ 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∅ ) |
| 13 | df-homa | ⊢ Homa = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) | |
| 14 | 13 | fvmptndm | ⊢ ( ¬ 𝐶 ∈ Cat → ( Homa ‘ 𝐶 ) = ∅ ) |
| 15 | 2 14 | eqtrid | ⊢ ( ¬ 𝐶 ∈ Cat → 𝐻 = ∅ ) |
| 16 | 15 | rneqd | ⊢ ( ¬ 𝐶 ∈ Cat → ran 𝐻 = ran ∅ ) |
| 17 | rn0 | ⊢ ran ∅ = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( ¬ 𝐶 ∈ Cat → ran 𝐻 = ∅ ) |
| 19 | 18 | unieqd | ⊢ ( ¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∪ ∅ ) |
| 20 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 21 | 19 20 | eqtrdi | ⊢ ( ¬ 𝐶 ∈ Cat → ∪ ran 𝐻 = ∅ ) |
| 22 | 12 21 | eqtr4d | ⊢ ( ¬ 𝐶 ∈ Cat → ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 ) |
| 23 | 11 22 | pm2.61i | ⊢ ( Arrow ‘ 𝐶 ) = ∪ ran 𝐻 |
| 24 | 1 23 | eqtri | ⊢ 𝐴 = ∪ ran 𝐻 |