This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | homaf | ⊢ ( 𝜑 → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | 1 2 3 4 | homafval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 6 | snssi | ⊢ ( 𝑥 ∈ ( 𝐵 × 𝐵 ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ) |
| 8 | ssv | ⊢ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V | |
| 9 | xpss12 | ⊢ ( ( { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ∧ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) |
| 11 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 12 | fvex | ⊢ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ∈ V | |
| 13 | 11 12 | xpex | ⊢ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ V |
| 14 | 13 | elpw | ⊢ ( ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ↔ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) |
| 15 | 10 14 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |
| 16 | 5 15 | fmpt3d | ⊢ ( 𝜑 → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |