This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of the Alexander Subbase Theorem alexsub . (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alexsubb | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) | |
| 2 | 1 | iscmp | ⊢ ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp ↔ ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) ) |
| 3 | 2 | simprbi | ⊢ ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp → ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) |
| 4 | simpr | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝑋 = ∪ 𝐵 ) | |
| 5 | elex | ⊢ ( 𝑋 ∈ UFL → 𝑋 ∈ V ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝑋 ∈ V ) |
| 7 | 4 6 | eqeltrrd | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ∪ 𝐵 ∈ V ) |
| 8 | uniexb | ⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝐵 ∈ V ) |
| 10 | fiuni | ⊢ ( 𝐵 ∈ V → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) |
| 12 | fibas | ⊢ ( fi ‘ 𝐵 ) ∈ TopBases | |
| 13 | unitg | ⊢ ( ( fi ‘ 𝐵 ) ∈ TopBases → ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ ( fi ‘ 𝐵 ) ) | |
| 14 | 12 13 | mp1i | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ ( fi ‘ 𝐵 ) ) |
| 15 | 11 4 14 | 3eqtr4d | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝑋 = ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) ) |
| 16 | 15 | eqeq1d | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( 𝑋 = ∪ 𝑥 ↔ ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 ) ) |
| 17 | 15 | eqeq1d | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( 𝑋 = ∪ 𝑦 ↔ ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) |
| 18 | 17 | rexbidv | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ↔ ( ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) ) ) |
| 21 | ssfii | ⊢ ( 𝐵 ∈ V → 𝐵 ⊆ ( fi ‘ 𝐵 ) ) | |
| 22 | 9 21 | syl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝐵 ⊆ ( fi ‘ 𝐵 ) ) |
| 23 | bastg | ⊢ ( ( fi ‘ 𝐵 ) ∈ TopBases → ( fi ‘ 𝐵 ) ⊆ ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | |
| 24 | 12 23 | ax-mp | ⊢ ( fi ‘ 𝐵 ) ⊆ ( topGen ‘ ( fi ‘ 𝐵 ) ) |
| 25 | 22 24 | sstrdi | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝐵 ⊆ ( topGen ‘ ( fi ‘ 𝐵 ) ) ) |
| 26 | 25 | sspwd | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ) |
| 27 | ssralv | ⊢ ( 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 29 | 20 28 | sylbird | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑥 ∈ 𝒫 ( topGen ‘ ( fi ‘ 𝐵 ) ) ( ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) ∪ ( topGen ‘ ( fi ‘ 𝐵 ) ) = ∪ 𝑦 ) → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 30 | 3 29 | syl5 | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 31 | simpll | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → 𝑋 ∈ UFL ) | |
| 32 | simplr | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → 𝑋 = ∪ 𝐵 ) | |
| 33 | eqidd | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → ( topGen ‘ ( fi ‘ 𝐵 ) ) = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | |
| 34 | velpw | ⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) | |
| 35 | unieq | ⊢ ( 𝑥 = 𝑧 → ∪ 𝑥 = ∪ 𝑧 ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑋 = ∪ 𝑥 ↔ 𝑋 = ∪ 𝑧 ) ) |
| 37 | pweq | ⊢ ( 𝑥 = 𝑧 → 𝒫 𝑥 = 𝒫 𝑧 ) | |
| 38 | 37 | ineq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝒫 𝑥 ∩ Fin ) = ( 𝒫 𝑧 ∩ Fin ) ) |
| 39 | 38 | rexeqdv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) |
| 40 | 36 39 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ↔ ( 𝑋 = ∪ 𝑧 → ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 41 | 40 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) → ( 𝑧 ∈ 𝒫 𝐵 → ( 𝑋 = ∪ 𝑧 → ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → ( 𝑧 ∈ 𝒫 𝐵 → ( 𝑋 = ∪ 𝑧 → ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 43 | 34 42 | biimtrrid | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → ( 𝑧 ⊆ 𝐵 → ( 𝑋 = ∪ 𝑧 → ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 44 | 43 | imp32 | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 45 | unieq | ⊢ ( 𝑦 = 𝑤 → ∪ 𝑦 = ∪ 𝑤 ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑤 ) ) |
| 47 | 46 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑦 ↔ ∃ 𝑤 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑤 ) |
| 48 | 44 47 | sylib | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑋 = ∪ 𝑤 ) |
| 49 | 31 32 33 48 | alexsub | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) → ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp ) |
| 50 | 49 | ex | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) → ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp ) ) |
| 51 | 30 50 | impbid | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑥 → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |