This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Alexander Subbase Theorem: If B is a subbase for the topology J , and any cover taken from B has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alexsub.1 | |- ( ph -> X e. UFL ) |
|
| alexsub.2 | |- ( ph -> X = U. B ) |
||
| alexsub.3 | |- ( ph -> J = ( topGen ` ( fi ` B ) ) ) |
||
| alexsub.4 | |- ( ( ph /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) |
||
| Assertion | alexsub | |- ( ph -> J e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsub.1 | |- ( ph -> X e. UFL ) |
|
| 2 | alexsub.2 | |- ( ph -> X = U. B ) |
|
| 3 | alexsub.3 | |- ( ph -> J = ( topGen ` ( fi ` B ) ) ) |
|
| 4 | alexsub.4 | |- ( ( ph /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> X e. UFL ) |
| 6 | 2 | adantr | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> X = U. B ) |
| 7 | 3 | adantr | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> J = ( topGen ` ( fi ` B ) ) ) |
| 8 | 4 | adantlr | |- ( ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) |
| 9 | simprl | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> f e. ( UFil ` X ) ) |
|
| 10 | simprr | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> ( J fLim f ) = (/) ) |
|
| 11 | 5 6 7 8 9 10 | alexsublem | |- -. ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) |
| 12 | 11 | pm2.21i | |- ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> -. ( J fLim f ) = (/) ) |
| 13 | 12 | expr | |- ( ( ph /\ f e. ( UFil ` X ) ) -> ( ( J fLim f ) = (/) -> -. ( J fLim f ) = (/) ) ) |
| 14 | 13 | pm2.01d | |- ( ( ph /\ f e. ( UFil ` X ) ) -> -. ( J fLim f ) = (/) ) |
| 15 | 14 | neqned | |- ( ( ph /\ f e. ( UFil ` X ) ) -> ( J fLim f ) =/= (/) ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) |
| 17 | fibas | |- ( fi ` B ) e. TopBases |
|
| 18 | tgtopon | |- ( ( fi ` B ) e. TopBases -> ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) |
| 20 | 3 19 | eqeltrdi | |- ( ph -> J e. ( TopOn ` U. ( fi ` B ) ) ) |
| 21 | 1 | elexd | |- ( ph -> X e. _V ) |
| 22 | 2 21 | eqeltrrd | |- ( ph -> U. B e. _V ) |
| 23 | uniexb | |- ( B e. _V <-> U. B e. _V ) |
|
| 24 | 22 23 | sylibr | |- ( ph -> B e. _V ) |
| 25 | fiuni | |- ( B e. _V -> U. B = U. ( fi ` B ) ) |
|
| 26 | 24 25 | syl | |- ( ph -> U. B = U. ( fi ` B ) ) |
| 27 | 2 26 | eqtrd | |- ( ph -> X = U. ( fi ` B ) ) |
| 28 | 27 | fveq2d | |- ( ph -> ( TopOn ` X ) = ( TopOn ` U. ( fi ` B ) ) ) |
| 29 | 20 28 | eleqtrrd | |- ( ph -> J e. ( TopOn ` X ) ) |
| 30 | ufilcmp | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) |
|
| 31 | 1 29 30 | syl2anc | |- ( ph -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) |
| 32 | 16 31 | mpbird | |- ( ph -> J e. Comp ) |