This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephdom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsseleq | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 2 | alephord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) | |
| 3 | sdomdom | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) | |
| 4 | 2 3 | biimtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 5 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 6 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) ) | |
| 7 | eqeng | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) | |
| 8 | 5 6 7 | mpsyl | ⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) |
| 10 | endom | ⊢ ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) | |
| 11 | 9 10 | syl6 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 12 | 4 11 | jaod | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 13 | 1 12 | sylbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 14 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 15 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 16 | ordtri2or | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵 ) ) | |
| 17 | 14 15 16 | syl2anr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵 ) ) |
| 18 | 17 | ord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ) |
| 19 | 18 | con1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴 ) ) |
| 20 | alephord | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 21 | 20 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 22 | sdomnen | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐵 ) ≈ ( ℵ ‘ 𝐴 ) ) | |
| 23 | sdomdom | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ( ℵ ‘ 𝐵 ) ≼ ( ℵ ‘ 𝐴 ) ) | |
| 24 | sbth | ⊢ ( ( ( ℵ ‘ 𝐵 ) ≼ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) → ( ℵ ‘ 𝐵 ) ≈ ( ℵ ‘ 𝐴 ) ) | |
| 25 | 24 | ex | ⊢ ( ( ℵ ‘ 𝐵 ) ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≈ ( ℵ ‘ 𝐴 ) ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≈ ( ℵ ‘ 𝐴 ) ) ) |
| 27 | 22 26 | mtod | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 28 | 21 27 | biimtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝐴 → ¬ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 29 | 19 28 | syld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ⊆ 𝐵 → ¬ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 30 | 13 29 | impcon4bid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |