This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. Theorem 8A(a) of Enderton p. 213 and its converse. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) | |
| 2 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 3 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 4 | onenon | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
| 6 | cardsdomel | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ dom card ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ) ) | |
| 7 | 2 5 6 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ) |
| 8 | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝐵 ) ) = ( ℵ ‘ 𝐵 ) | |
| 9 | 8 | eleq2i | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ ( ℵ ‘ 𝐵 ) ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) |
| 10 | 7 9 | bitri | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) |
| 11 | 1 10 | bitrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( ℵ ‘ 𝐵 ) ) ) |