This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephdom2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsdom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 4 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 5 | 4 | onordi | ⊢ Ord ( ℵ ‘ 𝐴 ) |
| 6 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 7 | ordtri1 | ⊢ ( ( Ord ( ℵ ‘ 𝐴 ) ∧ Ord 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 10 | domtriord | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 11 | 4 10 | mpan | ⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 13 | 3 9 12 | 3bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≼ 𝐵 ) ) |