This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephdom2 | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ B <-> ( aleph ` A ) ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsdom | |- ( ( B e. On /\ A e. On ) -> ( B e. ( aleph ` A ) <-> B ~< ( aleph ` A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B e. ( aleph ` A ) <-> B ~< ( aleph ` A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. On /\ B e. On ) -> ( -. B e. ( aleph ` A ) <-> -. B ~< ( aleph ` A ) ) ) |
| 4 | alephon | |- ( aleph ` A ) e. On |
|
| 5 | 4 | onordi | |- Ord ( aleph ` A ) |
| 6 | eloni | |- ( B e. On -> Ord B ) |
|
| 7 | ordtri1 | |- ( ( Ord ( aleph ` A ) /\ Ord B ) -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( B e. On -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
| 9 | 8 | adantl | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
| 10 | domtriord | |- ( ( ( aleph ` A ) e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
|
| 11 | 4 10 | mpan | |- ( B e. On -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
| 12 | 11 | adantl | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
| 13 | 3 9 12 | 3bitr4d | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ B <-> ( aleph ` A ) ~<_ B ) ) |