This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is zero iff its adjoint is zero. Theorem 3.11(i) of Beran p. 106. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjeq0 | ⊢ ( 𝑇 = 0hop ↔ ( adjℎ ‘ 𝑇 ) = 0hop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑇 = 0hop → ( adjℎ ‘ 𝑇 ) = ( adjℎ ‘ 0hop ) ) | |
| 2 | adj0 | ⊢ ( adjℎ ‘ 0hop ) = 0hop | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝑇 = 0hop → ( adjℎ ‘ 𝑇 ) = 0hop ) |
| 4 | fveq2 | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = ( adjℎ ‘ 0hop ) ) | |
| 5 | bdopssadj | ⊢ BndLinOp ⊆ dom adjℎ | |
| 6 | 0bdop | ⊢ 0hop ∈ BndLinOp | |
| 7 | 5 6 | sselii | ⊢ 0hop ∈ dom adjℎ |
| 8 | eleq1 | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ↔ 0hop ∈ dom adjℎ ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 10 | dmadjrnb | ⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → 𝑇 ∈ dom adjℎ ) |
| 12 | adjadj | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) | |
| 13 | 11 12 | syl | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
| 14 | 2 | a1i | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → ( adjℎ ‘ 0hop ) = 0hop ) |
| 15 | 4 13 14 | 3eqtr3d | ⊢ ( ( adjℎ ‘ 𝑇 ) = 0hop → 𝑇 = 0hop ) |
| 16 | 3 15 | impbii | ⊢ ( 𝑇 = 0hop ↔ ( adjℎ ‘ 𝑇 ) = 0hop ) |