This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double adjoint. Theorem 3.11(iv) of Beran p. 106. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjadj | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) | |
| 2 | dmadjrn | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 3 | adj1 | ⊢ ( ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 4 | 2 3 | syl3an1 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) = ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 5 | 1 4 | eqtr2d | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 6 | 5 | 3expib | ⊢ ( 𝑇 ∈ dom adjℎ → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 7 | 6 | ralrimivv | ⊢ ( 𝑇 ∈ dom adjℎ → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 8 | dmadjrn | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ dom adjℎ ) | |
| 9 | dmadjop | ⊢ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) | |
| 10 | 2 8 9 | 3syl | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 11 | dmadjop | ⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) | |
| 12 | hoeq1 | ⊢ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( 𝑇 ∈ dom adjℎ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) ) |
| 14 | 7 13 | mpbid | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |