This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj0 | ⊢ ( adjℎ ‘ 0hop ) = 0hop |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 2 | ho0val | ⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = ( 0ℎ ·ih 𝑦 ) ) |
| 4 | hi01 | ⊢ ( 𝑦 ∈ ℋ → ( 0ℎ ·ih 𝑦 ) = 0 ) | |
| 5 | 3 4 | sylan9eq | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = 0 ) |
| 6 | ho0val | ⊢ ( 𝑦 ∈ ℋ → ( 0hop ‘ 𝑦 ) = 0ℎ ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = ( 𝑥 ·ih 0ℎ ) ) |
| 8 | hi02 | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0ℎ ) = 0 ) | |
| 9 | 7 8 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = 0 ) |
| 10 | 5 9 | eqtr4d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) ) |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) |
| 12 | adjeq | ⊢ ( ( 0hop : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) ) → ( adjℎ ‘ 0hop ) = 0hop ) | |
| 13 | 1 1 11 12 | mp3an | ⊢ ( adjℎ ‘ 0hop ) = 0hop |