This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0bdop | ⊢ 0hop ∈ BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lnop | ⊢ 0hop ∈ LinOp | |
| 2 | nmop0 | ⊢ ( normop ‘ 0hop ) = 0 | |
| 3 | 0ltpnf | ⊢ 0 < +∞ | |
| 4 | 2 3 | eqbrtri | ⊢ ( normop ‘ 0hop ) < +∞ |
| 5 | elbdop | ⊢ ( 0hop ∈ BndLinOp ↔ ( 0hop ∈ LinOp ∧ ( normop ‘ 0hop ) < +∞ ) ) | |
| 6 | 1 4 5 | mpbir2an | ⊢ 0hop ∈ BndLinOp |