This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operator is zero iff its adjoint is zero. Theorem 3.11(i) of Beran p. 106. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjeq0 | |- ( T = 0hop <-> ( adjh ` T ) = 0hop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( T = 0hop -> ( adjh ` T ) = ( adjh ` 0hop ) ) |
|
| 2 | adj0 | |- ( adjh ` 0hop ) = 0hop |
|
| 3 | 1 2 | eqtrdi | |- ( T = 0hop -> ( adjh ` T ) = 0hop ) |
| 4 | fveq2 | |- ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = ( adjh ` 0hop ) ) |
|
| 5 | bdopssadj | |- BndLinOp C_ dom adjh |
|
| 6 | 0bdop | |- 0hop e. BndLinOp |
|
| 7 | 5 6 | sselii | |- 0hop e. dom adjh |
| 8 | eleq1 | |- ( ( adjh ` T ) = 0hop -> ( ( adjh ` T ) e. dom adjh <-> 0hop e. dom adjh ) ) |
|
| 9 | 7 8 | mpbiri | |- ( ( adjh ` T ) = 0hop -> ( adjh ` T ) e. dom adjh ) |
| 10 | dmadjrnb | |- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |
|
| 11 | 9 10 | sylibr | |- ( ( adjh ` T ) = 0hop -> T e. dom adjh ) |
| 12 | adjadj | |- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
|
| 13 | 11 12 | syl | |- ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = T ) |
| 14 | 2 | a1i | |- ( ( adjh ` T ) = 0hop -> ( adjh ` 0hop ) = 0hop ) |
| 15 | 4 13 14 | 3eqtr3d | |- ( ( adjh ` T ) = 0hop -> T = 0hop ) |
| 16 | 3 15 | impbii | |- ( T = 0hop <-> ( adjh ` T ) = 0hop ) |