This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006) (Proof shortened by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjvalval | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjcl | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) | |
| 2 | eqcom | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) ) | |
| 3 | adj2 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) | |
| 4 | 3 | 3com23 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
| 6 | 5 | eqeq2d | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝑤 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
| 7 | 2 6 | bitrid | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
| 8 | 7 | ralbidva | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) ) |
| 10 | simpr | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ ) | |
| 11 | 1 | adantr | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
| 12 | hial2eq2 | ⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝑤 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
| 14 | 9 13 | bitrd | ⊢ ( ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ↔ 𝑤 = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ) |
| 15 | 1 14 | riota5 | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) = ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) |
| 16 | 15 | eqcomd | ⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝐴 ) = ( 𝑥 ·ih 𝑤 ) ) ) |