This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double adjoint. Theorem 3.11(iv) of Beran p. 106. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjadj | |- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj2 | |- ( ( T e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih y ) = ( x .ih ( ( adjh ` T ) ` y ) ) ) |
|
| 2 | dmadjrn | |- ( T e. dom adjh -> ( adjh ` T ) e. dom adjh ) |
|
| 3 | adj1 | |- ( ( ( adjh ` T ) e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( ( adjh ` T ) ` y ) ) = ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) ) |
|
| 4 | 2 3 | syl3an1 | |- ( ( T e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( ( adjh ` T ) ` y ) ) = ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) ) |
| 5 | 1 4 | eqtr2d | |- ( ( T e. dom adjh /\ x e. ~H /\ y e. ~H ) -> ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 6 | 5 | 3expib | |- ( T e. dom adjh -> ( ( x e. ~H /\ y e. ~H ) -> ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) ) |
| 7 | 6 | ralrimivv | |- ( T e. dom adjh -> A. x e. ~H A. y e. ~H ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 8 | dmadjrn | |- ( ( adjh ` T ) e. dom adjh -> ( adjh ` ( adjh ` T ) ) e. dom adjh ) |
|
| 9 | dmadjop | |- ( ( adjh ` ( adjh ` T ) ) e. dom adjh -> ( adjh ` ( adjh ` T ) ) : ~H --> ~H ) |
|
| 10 | 2 8 9 | 3syl | |- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) : ~H --> ~H ) |
| 11 | dmadjop | |- ( T e. dom adjh -> T : ~H --> ~H ) |
|
| 12 | hoeq1 | |- ( ( ( adjh ` ( adjh ` T ) ) : ~H --> ~H /\ T : ~H --> ~H ) -> ( A. x e. ~H A. y e. ~H ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> ( adjh ` ( adjh ` T ) ) = T ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( T e. dom adjh -> ( A. x e. ~H A. y e. ~H ( ( ( adjh ` ( adjh ` T ) ) ` x ) .ih y ) = ( ( T ` x ) .ih y ) <-> ( adjh ` ( adjh ` T ) ) = T ) ) |
| 14 | 7 13 | mpbid | |- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |