This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoeq1 | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ 𝑆 = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 3 | hial2eq | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 5 | 4 | anandirs | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 6 | 5 | ralbidva | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 | ffn | ⊢ ( 𝑆 : ℋ ⟶ ℋ → 𝑆 Fn ℋ ) | |
| 8 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) | |
| 9 | eqfnfv | ⊢ ( ( 𝑆 Fn ℋ ∧ 𝑇 Fn ℋ ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 11 | 6 10 | bitr4d | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ 𝑆 = 𝑇 ) ) |