This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set X which has choice sequences on it of length ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acnnum | |- ( X e. AC_ ~P X <-> X e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( X e. AC_ ~P X -> ~P X e. _V ) |
|
| 2 | difss | |- ( ~P X \ { (/) } ) C_ ~P X |
|
| 3 | ssdomg | |- ( ~P X e. _V -> ( ( ~P X \ { (/) } ) C_ ~P X -> ( ~P X \ { (/) } ) ~<_ ~P X ) ) |
|
| 4 | 1 2 3 | mpisyl | |- ( X e. AC_ ~P X -> ( ~P X \ { (/) } ) ~<_ ~P X ) |
| 5 | acndom | |- ( ( ~P X \ { (/) } ) ~<_ ~P X -> ( X e. AC_ ~P X -> X e. AC_ ( ~P X \ { (/) } ) ) ) |
|
| 6 | 4 5 | mpcom | |- ( X e. AC_ ~P X -> X e. AC_ ( ~P X \ { (/) } ) ) |
| 7 | eldifsn | |- ( x e. ( ~P X \ { (/) } ) <-> ( x e. ~P X /\ x =/= (/) ) ) |
|
| 8 | elpwi | |- ( x e. ~P X -> x C_ X ) |
|
| 9 | 8 | anim1i | |- ( ( x e. ~P X /\ x =/= (/) ) -> ( x C_ X /\ x =/= (/) ) ) |
| 10 | 7 9 | sylbi | |- ( x e. ( ~P X \ { (/) } ) -> ( x C_ X /\ x =/= (/) ) ) |
| 11 | 10 | rgen | |- A. x e. ( ~P X \ { (/) } ) ( x C_ X /\ x =/= (/) ) |
| 12 | acni2 | |- ( ( X e. AC_ ( ~P X \ { (/) } ) /\ A. x e. ( ~P X \ { (/) } ) ( x C_ X /\ x =/= (/) ) ) -> E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) ) |
|
| 13 | 6 11 12 | sylancl | |- ( X e. AC_ ~P X -> E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) ) |
| 14 | simpr | |- ( ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) |
|
| 15 | 7 | imbi1i | |- ( ( x e. ( ~P X \ { (/) } ) -> ( f ` x ) e. x ) <-> ( ( x e. ~P X /\ x =/= (/) ) -> ( f ` x ) e. x ) ) |
| 16 | impexp | |- ( ( ( x e. ~P X /\ x =/= (/) ) -> ( f ` x ) e. x ) <-> ( x e. ~P X -> ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
|
| 17 | 15 16 | bitri | |- ( ( x e. ( ~P X \ { (/) } ) -> ( f ` x ) e. x ) <-> ( x e. ~P X -> ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
| 18 | 17 | ralbii2 | |- ( A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x <-> A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 19 | 14 18 | sylib | |- ( ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 20 | 19 | eximi | |- ( E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 21 | 13 20 | syl | |- ( X e. AC_ ~P X -> E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 22 | dfac8a | |- ( X e. AC_ ~P X -> ( E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) -> X e. dom card ) ) |
|
| 23 | 21 22 | mpd | |- ( X e. AC_ ~P X -> X e. dom card ) |
| 24 | pwexg | |- ( X e. dom card -> ~P X e. _V ) |
|
| 25 | numacn | |- ( ~P X e. _V -> ( X e. dom card -> X e. AC_ ~P X ) ) |
|
| 26 | 24 25 | mpcom | |- ( X e. dom card -> X e. AC_ ~P X ) |
| 27 | 23 26 | impbii | |- ( X e. AC_ ~P X <-> X e. dom card ) |