This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | ||
| abvtrivd.1 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| abvtrivd.2 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| abvtrivd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 · 𝑧 ) ≠ 0 ) | ||
| Assertion | abvtrivd | ⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvtriv.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvtriv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvtriv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | abvtriv.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) | |
| 5 | abvtrivd.1 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | abvtrivd.2 | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | abvtrivd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 · 𝑧 ) ≠ 0 ) | |
| 8 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 = ( AbsVal ‘ 𝑅 ) ) |
| 9 | 2 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 10 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) | |
| 11 | 5 | a1i | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
| 12 | 3 | a1i | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 1re | ⊢ 1 ∈ ℝ | |
| 15 | 13 14 | ifcli | ⊢ if ( 𝑥 = 0 , 0 , 1 ) ∈ ℝ |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 = 0 , 0 , 1 ) ∈ ℝ ) |
| 17 | 16 4 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ ) |
| 18 | 2 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 19 | iftrue | ⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , 0 , 1 ) = 0 ) | |
| 20 | c0ex | ⊢ 0 ∈ V | |
| 21 | 19 4 20 | fvmpt | ⊢ ( 0 ∈ 𝐵 → ( 𝐹 ‘ 0 ) = 0 ) |
| 22 | 6 18 21 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 23 | 0lt1 | ⊢ 0 < 1 | |
| 24 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 0 ↔ 𝑦 = 0 ) ) | |
| 25 | 24 | ifbid | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 0 , 0 , 1 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
| 26 | 1ex | ⊢ 1 ∈ V | |
| 27 | 20 26 | ifex | ⊢ if ( 𝑦 = 0 , 0 , 1 ) ∈ V |
| 28 | 25 4 27 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
| 29 | ifnefalse | ⊢ ( 𝑦 ≠ 0 → if ( 𝑦 = 0 , 0 , 1 ) = 1 ) | |
| 30 | 28 29 | sylan9eq | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
| 32 | 23 31 | breqtrrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑦 ) ) |
| 33 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 34 | 33 | eqcomi | ⊢ 1 = ( 1 · 1 ) |
| 35 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑅 ∈ Ring ) |
| 36 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑦 ∈ 𝐵 ) | |
| 37 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑧 ∈ 𝐵 ) | |
| 38 | 2 5 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 · 𝑧 ) ∈ 𝐵 ) |
| 39 | 35 36 37 38 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐵 ) |
| 40 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 · 𝑧 ) = 0 ) ) | |
| 41 | 40 | ifbid | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → if ( 𝑥 = 0 , 0 , 1 ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
| 42 | 20 26 | ifex | ⊢ if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ∈ V |
| 43 | 41 4 42 | fvmpt | ⊢ ( ( 𝑦 · 𝑧 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
| 44 | 39 43 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) ) |
| 45 | 7 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ ( 𝑦 · 𝑧 ) = 0 ) |
| 46 | 45 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( ( 𝑦 · 𝑧 ) = 0 , 0 , 1 ) = 1 ) |
| 47 | 44 46 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = 1 ) |
| 48 | 36 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 = 0 , 0 , 1 ) ) |
| 49 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑦 ≠ 0 ) | |
| 50 | 49 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑦 = 0 ) |
| 51 | 50 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( 𝑦 = 0 , 0 , 1 ) = 1 ) |
| 52 | 48 51 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
| 53 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 0 ↔ 𝑧 = 0 ) ) | |
| 54 | 53 | ifbid | ⊢ ( 𝑥 = 𝑧 → if ( 𝑥 = 0 , 0 , 1 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
| 55 | 20 26 | ifex | ⊢ if ( 𝑧 = 0 , 0 , 1 ) ∈ V |
| 56 | 54 4 55 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
| 57 | 37 56 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 = 0 , 0 , 1 ) ) |
| 58 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑧 ≠ 0 ) | |
| 59 | 58 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑧 = 0 ) |
| 60 | 59 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( 𝑧 = 0 , 0 , 1 ) = 1 ) |
| 61 | 57 60 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ 𝑧 ) = 1 ) |
| 62 | 52 61 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( 1 · 1 ) ) |
| 63 | 34 47 62 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 64 | breq1 | ⊢ ( 0 = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) → ( 0 ≤ 2 ↔ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 ) ) | |
| 65 | breq1 | ⊢ ( 1 = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) → ( 1 ≤ 2 ↔ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 ) ) | |
| 66 | 0le2 | ⊢ 0 ≤ 2 | |
| 67 | 1le2 | ⊢ 1 ≤ 2 | |
| 68 | 64 65 66 67 | keephyp | ⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ 2 |
| 69 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 70 | 68 69 | breqtri | ⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ ( 1 + 1 ) |
| 71 | 70 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ≤ ( 1 + 1 ) ) |
| 72 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 73 | 6 72 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 74 | 73 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → 𝑅 ∈ Grp ) |
| 75 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 76 | 2 75 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 77 | 74 36 37 76 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 78 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 ) ) | |
| 79 | 78 | ifbid | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → if ( 𝑥 = 0 , 0 , 1 ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
| 80 | 20 26 | ifex | ⊢ if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ∈ V |
| 81 | 79 4 80 | fvmpt | ⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
| 82 | 77 81 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = if ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = 0 , 0 , 1 ) ) |
| 83 | 52 61 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) = ( 1 + 1 ) ) |
| 84 | 71 82 83 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
| 85 | 8 9 10 11 12 6 17 22 32 63 84 | isabvd | ⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |