This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| abvrec.p | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | abvrec | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 1 / ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | abvrec.p | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 5 | simplr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) | |
| 6 | simprl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 10 | simpll | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑅 ∈ DivRing ) | |
| 11 | simprr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ≠ 0 ) | |
| 12 | 2 3 4 | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 | 10 6 11 12 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
| 15 | 5 13 14 | syl2anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ∈ ℂ ) |
| 17 | 1 2 3 | abvne0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 18 | 5 6 11 17 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 19 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 20 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 21 | 2 3 19 20 4 | drnginvrr | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 22 | 10 6 11 21 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 24 | 1 2 19 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 25 | 5 6 13 24 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 26 | 1 20 | abv1 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 28 | 23 25 27 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) ) = 1 ) |
| 29 | 9 16 18 28 | mvllmuld | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 1 / ( 𝐹 ‘ 𝑋 ) ) ) |