This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| abvdiv.p | ⊢ / = ( /r ‘ 𝑅 ) | ||
| Assertion | abvdiv | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | abvdiv.p | ⊢ / = ( /r ‘ 𝑅 ) | |
| 5 | simplr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) | |
| 6 | simpr1 | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑅 ∈ DivRing ) | |
| 8 | simpr2 | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ 𝐵 ) | |
| 9 | simpr3 | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ≠ 0 ) | |
| 10 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 11 | 2 3 10 | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | 7 8 9 11 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | 1 2 13 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 15 | 5 6 12 14 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 16 | 1 2 3 10 | abvrec | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) |
| 17 | 16 | 3adantr1 | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 20 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 21 | 2 20 3 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑌 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ) |
| 22 | 7 21 | syl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑌 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) ) |
| 23 | 8 9 22 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ ( Unit ‘ 𝑅 ) ) |
| 24 | 2 13 20 10 4 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 25 | 6 23 24 | syl2anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 27 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 28 | 5 6 27 | syl2anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 29 | 28 | recnd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 30 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 31 | 5 8 30 | syl2anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 32 | 31 | recnd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℂ ) |
| 33 | 1 2 3 | abvne0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
| 34 | 5 8 9 33 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
| 35 | 29 32 34 | divrecd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) / ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 1 / ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 36 | 19 26 35 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 / 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) / ( 𝐹 ‘ 𝑌 ) ) ) |