This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
| abvneg.b | |- B = ( Base ` R ) |
||
| abvrec.z | |- .0. = ( 0g ` R ) |
||
| abvrec.p | |- I = ( invr ` R ) |
||
| Assertion | abvrec | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) = ( 1 / ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvneg.b | |- B = ( Base ` R ) |
|
| 3 | abvrec.z | |- .0. = ( 0g ` R ) |
|
| 4 | abvrec.p | |- I = ( invr ` R ) |
|
| 5 | simplr | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> F e. A ) |
|
| 6 | simprl | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X e. B ) |
|
| 7 | 1 2 | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 8 | 5 6 7 | syl2anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 9 | 8 | recnd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 10 | simpll | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> R e. DivRing ) |
|
| 11 | simprr | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> X =/= .0. ) |
|
| 12 | 2 3 4 | drnginvrcl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |
| 13 | 10 6 11 12 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( I ` X ) e. B ) |
| 14 | 1 2 | abvcl | |- ( ( F e. A /\ ( I ` X ) e. B ) -> ( F ` ( I ` X ) ) e. RR ) |
| 15 | 5 13 14 | syl2anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. RR ) |
| 16 | 15 | recnd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) e. CC ) |
| 17 | 1 2 3 | abvne0 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
| 18 | 5 6 11 17 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` X ) =/= 0 ) |
| 19 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 20 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 21 | 2 3 19 20 4 | drnginvrr | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 22 | 10 6 11 21 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 23 | 22 | fveq2d | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( F ` ( 1r ` R ) ) ) |
| 24 | 1 2 19 | abvmul | |- ( ( F e. A /\ X e. B /\ ( I ` X ) e. B ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
| 25 | 5 6 13 24 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( I ` X ) ) ) = ( ( F ` X ) x. ( F ` ( I ` X ) ) ) ) |
| 26 | 1 20 | abv1 | |- ( ( R e. DivRing /\ F e. A ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 27 | 26 | adantr | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 28 | 23 25 27 | 3eqtr3d | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( I ` X ) ) ) = 1 ) |
| 29 | 9 16 18 28 | mvllmuld | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ X =/= .0. ) ) -> ( F ` ( I ` X ) ) = ( 1 / ( F ` X ) ) ) |