This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
| abvneg.b | |- B = ( Base ` R ) |
||
| abvrec.z | |- .0. = ( 0g ` R ) |
||
| abvdiv.p | |- ./ = ( /r ` R ) |
||
| Assertion | abvdiv | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( ( F ` X ) / ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvneg.b | |- B = ( Base ` R ) |
|
| 3 | abvrec.z | |- .0. = ( 0g ` R ) |
|
| 4 | abvdiv.p | |- ./ = ( /r ` R ) |
|
| 5 | simplr | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> F e. A ) |
|
| 6 | simpr1 | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> X e. B ) |
|
| 7 | simpll | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> R e. DivRing ) |
|
| 8 | simpr2 | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. B ) |
|
| 9 | simpr3 | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y =/= .0. ) |
|
| 10 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 11 | 2 3 10 | drnginvrcl | |- ( ( R e. DivRing /\ Y e. B /\ Y =/= .0. ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 12 | 7 8 9 11 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 13 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 14 | 1 2 13 | abvmul | |- ( ( F e. A /\ X e. B /\ ( ( invr ` R ) ` Y ) e. B ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
| 15 | 5 6 12 14 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) ) |
| 16 | 1 2 3 10 | abvrec | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
| 17 | 16 | 3adantr1 | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( ( invr ` R ) ` Y ) ) = ( 1 / ( F ` Y ) ) ) |
| 18 | 17 | oveq2d | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) x. ( F ` ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 19 | 15 18 | eqtrd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 20 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 21 | 2 20 3 | drngunit | |- ( R e. DivRing -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
| 22 | 7 21 | syl | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( Y e. ( Unit ` R ) <-> ( Y e. B /\ Y =/= .0. ) ) ) |
| 23 | 8 9 22 | mpbir2and | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> Y e. ( Unit ` R ) ) |
| 24 | 2 13 20 10 4 | dvrval | |- ( ( X e. B /\ Y e. ( Unit ` R ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 25 | 6 23 24 | syl2anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 26 | 25 | fveq2d | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( F ` ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) ) |
| 27 | 1 2 | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 28 | 5 6 27 | syl2anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 29 | 28 | recnd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 30 | 1 2 | abvcl | |- ( ( F e. A /\ Y e. B ) -> ( F ` Y ) e. RR ) |
| 31 | 5 8 30 | syl2anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. RR ) |
| 32 | 31 | recnd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. CC ) |
| 33 | 1 2 3 | abvne0 | |- ( ( F e. A /\ Y e. B /\ Y =/= .0. ) -> ( F ` Y ) =/= 0 ) |
| 34 | 5 8 9 33 | syl3anc | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) =/= 0 ) |
| 35 | 29 32 34 | divrecd | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) / ( F ` Y ) ) = ( ( F ` X ) x. ( 1 / ( F ` Y ) ) ) ) |
| 36 | 19 26 35 | 3eqtr4d | |- ( ( ( R e. DivRing /\ F e. A ) /\ ( X e. B /\ Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X ./ Y ) ) = ( ( F ` X ) / ( F ` Y ) ) ) |