This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| abvdom.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | abvdom | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvrec.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | abvdom.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simp1 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝐹 ∈ 𝐴 ) | |
| 6 | simp2l | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simp3l | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 4 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
| 10 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 13 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 14 | 5 7 13 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℂ ) |
| 16 | simp2r | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑋 ≠ 0 ) | |
| 17 | 1 2 3 | abvne0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 18 | 5 6 16 17 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
| 19 | simp3r | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → 𝑌 ≠ 0 ) | |
| 20 | 1 2 3 | abvne0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
| 21 | 5 7 19 20 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ 0 ) |
| 22 | 12 15 18 21 | mulne0d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · ( 𝐹 ‘ 𝑌 ) ) ≠ 0 ) |
| 23 | 9 22 | eqnetrd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ≠ 0 ) |
| 24 | 1 3 | abv0 | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
| 25 | 5 24 | syl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
| 26 | fveqeq2 | ⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = 0 ↔ ( 𝐹 ‘ 0 ) = 0 ) ) | |
| 27 | 25 26 | syl5ibrcom | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = 0 ) ) |
| 28 | 27 | necon3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) ≠ 0 → ( 𝑋 · 𝑌 ) ≠ 0 ) ) |
| 29 | 23 28 | mpd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |