This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubsub23.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| ablsubsub23.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ablsubsub23 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub23.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubsub23.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐺 ∈ Abel ) | |
| 4 | simpr3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 5 | simpr2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) ) |
| 8 | 3 4 5 7 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
| 10 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 11 | 1 6 2 | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) ) |
| 13 | 3ancomb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 14 | 13 | biimpi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 15 | 1 6 2 | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
| 16 | 10 14 15 | syl2an | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
| 17 | 9 12 16 | 3bitr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |