This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubsub23.v | |- V = ( Base ` G ) |
|
| ablsubsub23.m | |- .- = ( -g ` G ) |
||
| Assertion | ablsubsub23 | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( A .- C ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub23.v | |- V = ( Base ` G ) |
|
| 2 | ablsubsub23.m | |- .- = ( -g ` G ) |
|
| 3 | simpl | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> G e. Abel ) |
|
| 4 | simpr3 | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
|
| 5 | simpr2 | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 | ablcom | |- ( ( G e. Abel /\ C e. V /\ B e. V ) -> ( C ( +g ` G ) B ) = ( B ( +g ` G ) C ) ) |
| 8 | 3 4 5 7 | syl3anc | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( C ( +g ` G ) B ) = ( B ( +g ` G ) C ) ) |
| 9 | 8 | eqeq1d | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( C ( +g ` G ) B ) = A <-> ( B ( +g ` G ) C ) = A ) ) |
| 10 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 11 | 1 6 2 | grpsubadd | |- ( ( G e. Grp /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( C ( +g ` G ) B ) = A ) ) |
| 12 | 10 11 | sylan | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( C ( +g ` G ) B ) = A ) ) |
| 13 | 3ancomb | |- ( ( A e. V /\ B e. V /\ C e. V ) <-> ( A e. V /\ C e. V /\ B e. V ) ) |
|
| 14 | 13 | biimpi | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ C e. V /\ B e. V ) ) |
| 15 | 1 6 2 | grpsubadd | |- ( ( G e. Grp /\ ( A e. V /\ C e. V /\ B e. V ) ) -> ( ( A .- C ) = B <-> ( B ( +g ` G ) C ) = A ) ) |
| 16 | 10 14 15 | syl2an | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- C ) = B <-> ( B ( +g ` G ) C ) = A ) ) |
| 17 | 9 12 16 | 3bitr4d | |- ( ( G e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( A .- C ) = B ) ) |