This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ab0w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ab0w | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | dfnul4 | ⊢ ∅ = { 𝑥 ∣ ⊥ } | |
| 3 | 2 | eqeq2i | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ) |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) | |
| 5 | sbv | ⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ ) |
| 7 | 6 | bibi2i | ⊢ ( ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝜓 ↔ ⊥ ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) ) |
| 9 | 1 | eqabcbw | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 10 | nbfal | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) | |
| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ¬ 𝜓 ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) ) |
| 12 | 8 9 11 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 13 | 3 12 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 ) |