This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ab0w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | ab0w | |- ( { x | ph } = (/) <-> A. y -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | dfnul4 | |- (/) = { x | F. } |
|
| 3 | 2 | eqeq2i | |- ( { x | ph } = (/) <-> { x | ph } = { x | F. } ) |
| 4 | df-clab | |- ( y e. { x | F. } <-> [ y / x ] F. ) |
|
| 5 | sbv | |- ( [ y / x ] F. <-> F. ) |
|
| 6 | 4 5 | bitri | |- ( y e. { x | F. } <-> F. ) |
| 7 | 6 | bibi2i | |- ( ( ps <-> y e. { x | F. } ) <-> ( ps <-> F. ) ) |
| 8 | 7 | albii | |- ( A. y ( ps <-> y e. { x | F. } ) <-> A. y ( ps <-> F. ) ) |
| 9 | 1 | eqabcbw | |- ( { x | ph } = { x | F. } <-> A. y ( ps <-> y e. { x | F. } ) ) |
| 10 | nbfal | |- ( -. ps <-> ( ps <-> F. ) ) |
|
| 11 | 10 | albii | |- ( A. y -. ps <-> A. y ( ps <-> F. ) ) |
| 12 | 8 9 11 | 3bitr4i | |- ( { x | ph } = { x | F. } <-> A. y -. ps ) |
| 13 | 3 12 | bitri | |- ( { x | ph } = (/) <-> A. y -. ps ) |