This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for a variable not occurring in a proposition. See sbf for a version without disjoint variable condition on x , ph . If one adds a disjoint variable condition on x , t , then sbv can be proved directly by chaining equsv with sb6 . (Contributed by BJ, 22-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbv | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) | |
| 2 | ax5e | ⊢ ( ∃ 𝑥 𝜑 → 𝜑 ) | |
| 3 | 1 2 | syl | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → 𝜑 ) |
| 4 | ax-5 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 5 | stdpc4 | ⊢ ( ∀ 𝑥 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) |
| 7 | 3 6 | impbii | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ 𝜑 ) |