This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019) Avoid ax-8 , df-clel . (Revised by GG, 3-Sep-2024) Prove directly from definition to allow shortening dfnul2 . (Revised by BJ, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnul4 | ⊢ ∅ = { 𝑥 ∣ ⊥ } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nul | ⊢ ∅ = ( V ∖ V ) | |
| 2 | df-dif | ⊢ ( V ∖ V ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) } | |
| 3 | pm3.24 | ⊢ ¬ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) | |
| 4 | 3 | bifal | ⊢ ( ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) ↔ ⊥ ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ V ) } = { 𝑥 ∣ ⊥ } |
| 6 | 1 2 5 | 3eqtri | ⊢ ∅ = { 𝑥 ∣ ⊥ } |