This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Change bound variables in S . (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| Assertion | 4sqlem2 | ⊢ ( 𝐴 ∈ 𝑆 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝑆 ↔ 𝐴 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } ) |
| 3 | id | ⊢ ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) | |
| 4 | ovex | ⊢ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ∈ V | |
| 5 | 3 4 | eqeltrdi | ⊢ ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → 𝐴 ∈ V ) |
| 6 | 5 | a1i | ⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → 𝐴 ∈ V ) ) |
| 7 | 6 | rexlimdvva | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → 𝐴 ∈ V ) ) |
| 8 | 7 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → 𝐴 ∈ V ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) ) |
| 13 | 12 | 2rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑦 = 𝑏 → ( 𝑦 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑦 = 𝑏 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) |
| 17 | 16 | eqeq2d | ⊢ ( 𝑦 = 𝑏 → ( 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) ) |
| 18 | 17 | 2rexbidv | ⊢ ( 𝑦 = 𝑏 → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) ) |
| 19 | 13 18 | cbvrex2vw | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑧 = 𝑐 → ( 𝑧 ↑ 2 ) = ( 𝑐 ↑ 2 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑧 = 𝑐 → ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) = ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) |
| 22 | 21 | oveq2d | ⊢ ( 𝑧 = 𝑐 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) |
| 23 | 22 | eqeq2d | ⊢ ( 𝑧 = 𝑐 → ( 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ) ) |
| 24 | oveq1 | ⊢ ( 𝑤 = 𝑑 → ( 𝑤 ↑ 2 ) = ( 𝑑 ↑ 2 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑤 = 𝑑 → ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) = ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( 𝑤 = 𝑑 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 27 | 26 | eqeq2d | ⊢ ( 𝑤 = 𝑑 → ( 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 28 | 23 27 | cbvrex2vw | ⊢ ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 29 | eqeq1 | ⊢ ( 𝑛 = 𝐴 → ( 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) | |
| 30 | 29 | 2rexbidv | ⊢ ( 𝑛 = 𝐴 → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 31 | 28 30 | bitrid | ⊢ ( 𝑛 = 𝐴 → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 32 | 31 | 2rexbidv | ⊢ ( 𝑛 = 𝐴 → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 33 | 19 32 | bitrid | ⊢ ( 𝑛 = 𝐴 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 34 | 8 33 | elab3 | ⊢ ( 𝐴 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 35 | 2 34 | bitri | ⊢ ( 𝐴 ∈ 𝑆 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |