This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4fvwrd4 | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) | |
| 2 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 3 | elnn0uz | ⊢ ( 0 ∈ ℕ0 ↔ 0 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 4 | 2 3 | mpbi | ⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 5 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 6 | elnn0uz | ⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 7 | 5 6 | mpbi | ⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 8 | uzss | ⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 0 ) |
| 10 | 9 | sseli | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 𝐿 ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | eluzfz | ⊢ ( ( 0 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 0 ) ) → 0 ∈ ( 0 ... 𝐿 ) ) | |
| 12 | 4 10 11 | sylancr | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 0 ∈ ( 0 ... 𝐿 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → 0 ∈ ( 0 ... 𝐿 ) ) |
| 14 | 1 13 | ffvelcdmd | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 15 | clel5 | ⊢ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ↔ ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ) |
| 17 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 18 | 1z | ⊢ 1 ∈ ℤ | |
| 19 | 3z | ⊢ 3 ∈ ℤ | |
| 20 | 1le3 | ⊢ 1 ≤ 3 | |
| 21 | eluz2 | ⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3 ) ) | |
| 22 | 18 19 20 21 | mpbir3an | ⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
| 23 | uzss | ⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 1 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ℤ≥ ‘ 3 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 25 | 24 | sseli | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 | eluzfz | ⊢ ( ( 1 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) → 1 ∈ ( 0 ... 𝐿 ) ) | |
| 27 | 17 25 26 | sylancr | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 0 ... 𝐿 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → 1 ∈ ( 0 ... 𝐿 ) ) |
| 29 | 1 28 | ffvelcdmd | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
| 30 | clel5 | ⊢ ( ( 𝑃 ‘ 1 ) ∈ 𝑉 ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) | |
| 31 | 29 30 | sylib | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) |
| 32 | 16 31 | jca | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ) |
| 33 | 2eluzge0 | ⊢ 2 ∈ ( ℤ≥ ‘ 0 ) | |
| 34 | uzuzle23 | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 𝐿 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 35 | eluzfz | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 2 ) ) → 2 ∈ ( 0 ... 𝐿 ) ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ( 0 ... 𝐿 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → 2 ∈ ( 0 ... 𝐿 ) ) |
| 38 | 1 37 | ffvelcdmd | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
| 39 | clel5 | ⊢ ( ( 𝑃 ‘ 2 ) ∈ 𝑉 ↔ ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ) |
| 41 | eluzfz | ⊢ ( ( 3 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 3 ) ) → 3 ∈ ( 0 ... 𝐿 ) ) | |
| 42 | 7 41 | mpan | ⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) → 3 ∈ ( 0 ... 𝐿 ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → 3 ∈ ( 0 ... 𝐿 ) ) |
| 44 | 1 43 | ffvelcdmd | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 3 ) ∈ 𝑉 ) |
| 45 | clel5 | ⊢ ( ( 𝑃 ‘ 3 ) ∈ 𝑉 ↔ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) | |
| 46 | 44 45 | sylib | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) |
| 47 | 32 40 46 | jca32 | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ( ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 48 | r19.42v | ⊢ ( ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) | |
| 49 | r19.42v | ⊢ ( ∃ 𝑑 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ↔ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) | |
| 50 | 49 | anbi2i | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 51 | 48 50 | bitri | ⊢ ( ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 52 | 51 | rexbii | ⊢ ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ∃ 𝑐 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 53 | 52 | 2rexbii | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 54 | r19.42v | ⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) | |
| 55 | r19.41v | ⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ↔ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) | |
| 56 | 55 | anbi2i | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑉 ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 57 | 54 56 | bitri | ⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 58 | 57 | 2rexbii | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 59 | r19.41v | ⊢ ( ∃ 𝑏 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) | |
| 60 | r19.42v | ⊢ ( ∃ 𝑏 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ↔ ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ) | |
| 61 | 60 | anbi1i | ⊢ ( ( ∃ 𝑏 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 62 | 59 61 | bitri | ⊢ ( ∃ 𝑏 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 63 | 62 | rexbii | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 64 | r19.41v | ⊢ ( ∃ 𝑎 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) | |
| 65 | r19.41v | ⊢ ( ∃ 𝑎 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ) | |
| 66 | 65 | anbi1i | ⊢ ( ( ∃ 𝑎 ∈ 𝑉 ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 67 | 63 64 66 | 3bitri | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 68 | 53 58 67 | 3bitri | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ↔ ( ( ∃ 𝑎 ∈ 𝑉 ( 𝑃 ‘ 0 ) = 𝑎 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ∃ 𝑐 ∈ 𝑉 ( 𝑃 ‘ 2 ) = 𝑐 ∧ ∃ 𝑑 ∈ 𝑉 ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |
| 69 | 47 68 | sylibr | ⊢ ( ( 𝐿 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑑 ∈ 𝑉 ( ( ( 𝑃 ‘ 0 ) = 𝑎 ∧ ( 𝑃 ‘ 1 ) = 𝑏 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝑐 ∧ ( 𝑃 ‘ 3 ) = 𝑑 ) ) ) |