This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4fvwrd4 | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> P : ( 0 ... L ) --> V ) |
|
| 2 | 0nn0 | |- 0 e. NN0 |
|
| 3 | elnn0uz | |- ( 0 e. NN0 <-> 0 e. ( ZZ>= ` 0 ) ) |
|
| 4 | 2 3 | mpbi | |- 0 e. ( ZZ>= ` 0 ) |
| 5 | 3nn0 | |- 3 e. NN0 |
|
| 6 | elnn0uz | |- ( 3 e. NN0 <-> 3 e. ( ZZ>= ` 0 ) ) |
|
| 7 | 5 6 | mpbi | |- 3 e. ( ZZ>= ` 0 ) |
| 8 | uzss | |- ( 3 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ZZ>= ` 3 ) C_ ( ZZ>= ` 0 ) |
| 10 | 9 | sseli | |- ( L e. ( ZZ>= ` 3 ) -> L e. ( ZZ>= ` 0 ) ) |
| 11 | eluzfz | |- ( ( 0 e. ( ZZ>= ` 0 ) /\ L e. ( ZZ>= ` 0 ) ) -> 0 e. ( 0 ... L ) ) |
|
| 12 | 4 10 11 | sylancr | |- ( L e. ( ZZ>= ` 3 ) -> 0 e. ( 0 ... L ) ) |
| 13 | 12 | adantr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> 0 e. ( 0 ... L ) ) |
| 14 | 1 13 | ffvelcdmd | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( P ` 0 ) e. V ) |
| 15 | clel5 | |- ( ( P ` 0 ) e. V <-> E. a e. V ( P ` 0 ) = a ) |
|
| 16 | 14 15 | sylib | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. a e. V ( P ` 0 ) = a ) |
| 17 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 18 | 1z | |- 1 e. ZZ |
|
| 19 | 3z | |- 3 e. ZZ |
|
| 20 | 1le3 | |- 1 <_ 3 |
|
| 21 | eluz2 | |- ( 3 e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ 3 e. ZZ /\ 1 <_ 3 ) ) |
|
| 22 | 18 19 20 21 | mpbir3an | |- 3 e. ( ZZ>= ` 1 ) |
| 23 | uzss | |- ( 3 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 3 ) C_ ( ZZ>= ` 1 ) ) |
|
| 24 | 22 23 | ax-mp | |- ( ZZ>= ` 3 ) C_ ( ZZ>= ` 1 ) |
| 25 | 24 | sseli | |- ( L e. ( ZZ>= ` 3 ) -> L e. ( ZZ>= ` 1 ) ) |
| 26 | eluzfz | |- ( ( 1 e. ( ZZ>= ` 0 ) /\ L e. ( ZZ>= ` 1 ) ) -> 1 e. ( 0 ... L ) ) |
|
| 27 | 17 25 26 | sylancr | |- ( L e. ( ZZ>= ` 3 ) -> 1 e. ( 0 ... L ) ) |
| 28 | 27 | adantr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> 1 e. ( 0 ... L ) ) |
| 29 | 1 28 | ffvelcdmd | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( P ` 1 ) e. V ) |
| 30 | clel5 | |- ( ( P ` 1 ) e. V <-> E. b e. V ( P ` 1 ) = b ) |
|
| 31 | 29 30 | sylib | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. b e. V ( P ` 1 ) = b ) |
| 32 | 16 31 | jca | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) ) |
| 33 | 2eluzge0 | |- 2 e. ( ZZ>= ` 0 ) |
|
| 34 | uzuzle23 | |- ( L e. ( ZZ>= ` 3 ) -> L e. ( ZZ>= ` 2 ) ) |
|
| 35 | eluzfz | |- ( ( 2 e. ( ZZ>= ` 0 ) /\ L e. ( ZZ>= ` 2 ) ) -> 2 e. ( 0 ... L ) ) |
|
| 36 | 33 34 35 | sylancr | |- ( L e. ( ZZ>= ` 3 ) -> 2 e. ( 0 ... L ) ) |
| 37 | 36 | adantr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> 2 e. ( 0 ... L ) ) |
| 38 | 1 37 | ffvelcdmd | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( P ` 2 ) e. V ) |
| 39 | clel5 | |- ( ( P ` 2 ) e. V <-> E. c e. V ( P ` 2 ) = c ) |
|
| 40 | 38 39 | sylib | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. c e. V ( P ` 2 ) = c ) |
| 41 | eluzfz | |- ( ( 3 e. ( ZZ>= ` 0 ) /\ L e. ( ZZ>= ` 3 ) ) -> 3 e. ( 0 ... L ) ) |
|
| 42 | 7 41 | mpan | |- ( L e. ( ZZ>= ` 3 ) -> 3 e. ( 0 ... L ) ) |
| 43 | 42 | adantr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> 3 e. ( 0 ... L ) ) |
| 44 | 1 43 | ffvelcdmd | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( P ` 3 ) e. V ) |
| 45 | clel5 | |- ( ( P ` 3 ) e. V <-> E. d e. V ( P ` 3 ) = d ) |
|
| 46 | 44 45 | sylib | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. d e. V ( P ` 3 ) = d ) |
| 47 | 32 40 46 | jca32 | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> ( ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 48 | r19.42v | |- ( E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ E. d e. V ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) ) |
|
| 49 | r19.42v | |- ( E. d e. V ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) <-> ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) |
|
| 50 | 49 | anbi2i | |- ( ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ E. d e. V ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 51 | 48 50 | bitri | |- ( E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 52 | 51 | rexbii | |- ( E. c e. V E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> E. c e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 53 | 52 | 2rexbii | |- ( E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> E. a e. V E. b e. V E. c e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 54 | r19.42v | |- ( E. c e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ E. c e. V ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
|
| 55 | r19.41v | |- ( E. c e. V ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) <-> ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) |
|
| 56 | 55 | anbi2i | |- ( ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ E. c e. V ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 57 | 54 56 | bitri | |- ( E. c e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 58 | 57 | 2rexbii | |- ( E. a e. V E. b e. V E. c e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> E. a e. V E. b e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 59 | r19.41v | |- ( E. b e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( E. b e. V ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
|
| 60 | r19.42v | |- ( E. b e. V ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) <-> ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) ) |
|
| 61 | 60 | anbi1i | |- ( ( E. b e. V ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 62 | 59 61 | bitri | |- ( E. b e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 63 | 62 | rexbii | |- ( E. a e. V E. b e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> E. a e. V ( ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 64 | r19.41v | |- ( E. a e. V ( ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( E. a e. V ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
|
| 65 | r19.41v | |- ( E. a e. V ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) <-> ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) ) |
|
| 66 | 65 | anbi1i | |- ( ( E. a e. V ( ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 67 | 63 64 66 | 3bitri | |- ( E. a e. V E. b e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) <-> ( ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 68 | 53 58 67 | 3bitri | |- ( E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) <-> ( ( E. a e. V ( P ` 0 ) = a /\ E. b e. V ( P ` 1 ) = b ) /\ ( E. c e. V ( P ` 2 ) = c /\ E. d e. V ( P ` 3 ) = d ) ) ) |
| 69 | 47 68 | sylibr | |- ( ( L e. ( ZZ>= ` 3 ) /\ P : ( 0 ... L ) --> V ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( P ` 0 ) = a /\ ( P ` 1 ) = b ) /\ ( ( P ` 2 ) = c /\ ( P ` 3 ) = d ) ) ) |