This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo operation is periodic. (Contributed by NM, 12-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modcyc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 − ( 𝐵 · 𝑁 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | mulneg1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝑁 · 𝐵 ) = - ( 𝑁 · 𝐵 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( - 𝑁 · 𝐵 ) = - ( 𝑁 · 𝐵 ) ) |
| 6 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐵 · 𝑁 ) = ( 𝑁 · 𝐵 ) ) | |
| 7 | 6 | negeqd | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → - ( 𝐵 · 𝑁 ) = - ( 𝑁 · 𝐵 ) ) |
| 8 | 5 7 | eqtr4d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( - 𝑁 · 𝐵 ) = - ( 𝐵 · 𝑁 ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( - 𝑁 · 𝐵 ) = - ( 𝐵 · 𝑁 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 + ( - 𝑁 · 𝐵 ) ) = ( 𝐴 + - ( 𝐵 · 𝑁 ) ) ) |
| 11 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐵 · 𝑁 ) ∈ ℂ ) | |
| 12 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝑁 ) ∈ ℂ ) → ( 𝐴 + - ( 𝐵 · 𝑁 ) ) = ( 𝐴 − ( 𝐵 · 𝑁 ) ) ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) → ( 𝐴 + - ( 𝐵 · 𝑁 ) ) = ( 𝐴 − ( 𝐵 · 𝑁 ) ) ) |
| 14 | 13 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 + - ( 𝐵 · 𝑁 ) ) = ( 𝐴 − ( 𝐵 · 𝑁 ) ) ) |
| 15 | 10 14 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 − ( 𝐵 · 𝑁 ) ) = ( 𝐴 + ( - 𝑁 · 𝐵 ) ) ) |
| 16 | 1 2 3 15 | syl3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 − ( 𝐵 · 𝑁 ) ) = ( 𝐴 + ( - 𝑁 · 𝐵 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 − ( 𝐵 · 𝑁 ) ) mod 𝐵 ) = ( ( 𝐴 + ( - 𝑁 · 𝐵 ) ) mod 𝐵 ) ) |
| 18 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 19 | modcyc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ - 𝑁 ∈ ℤ ) → ( ( 𝐴 + ( - 𝑁 · 𝐵 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) | |
| 20 | 18 19 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 + ( - 𝑁 · 𝐵 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 − ( 𝐵 · 𝑁 ) ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |