This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon . (Contributed by AV, 6-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2pthnloop.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | 2pthnloop | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthnloop.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 3 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
| 5 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 6 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 7 1 | iswlkg | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝐺 ∈ V → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ∧ Fun ◡ 𝐹 ) ) ) |
| 10 | 6 9 | bitrid | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ∧ Fun ◡ 𝐹 ) ) ) |
| 11 | pthdadjvtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) | |
| 12 | 11 | ad5ant245 | ⊢ ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
| 13 | 12 | neneqd | ⊢ ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
| 14 | ifpfal | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 16 | fvexd | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ V ) | |
| 17 | fvexd | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ V ) | |
| 18 | neqne | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) | |
| 19 | fvexd | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V ) | |
| 20 | prsshashgt1 | ⊢ ( ( ( ( 𝑃 ‘ 𝑖 ) ∈ V ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ V ∧ ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | |
| 21 | 16 17 18 19 20 | syl31anc | ⊢ ( ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 23 | 15 22 | sylbid | ⊢ ( ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 24 | 13 23 | mpdan | ⊢ ( ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 25 | 24 | ralimdva | ⊢ ( ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 26 | 25 | ex | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
| 27 | 26 | com23 | ⊢ ( ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
| 28 | 27 | exp31 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 29 | 28 | com24 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ( ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 30 | 29 | 3impia | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ( ( Fun ◡ 𝐹 ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) |
| 31 | 30 | exp4c | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( Fun ◡ 𝐹 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ∧ Fun ◡ 𝐹 ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 33 | 10 32 | biimtrdi | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 34 | 33 | com24 | ⊢ ( 𝐺 ∈ V → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 35 | 34 | com14 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝐺 ∈ V → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 36 | 35 | 3imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝐺 ∈ V → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) |
| 37 | 36 | com12 | ⊢ ( 𝐺 ∈ V → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) |
| 38 | 5 37 | biimtrid | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) |
| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) |
| 40 | 4 39 | mpcom | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
| 41 | 40 | pm2.43i | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 42 | 41 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2 ≤ ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |