This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prsshashgt1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → 2 ≤ ( ♯ ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
| 3 | id | ⊢ ( 𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵 ) | |
| 4 | hashprb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) | |
| 5 | 4 | biimpi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 6 | 1 2 3 5 | syl3an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 8 | hashss | ⊢ ( ( 𝐶 ∈ 𝑈 ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) ) | |
| 9 | 8 | adantll | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ ( ♯ ‘ 𝐶 ) ) |
| 10 | 7 9 | eqbrtrrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → 2 ≤ ( ♯ ‘ 𝐶 ) ) |
| 11 | 10 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ 𝑈 ) → ( { 𝐴 , 𝐵 } ⊆ 𝐶 → 2 ≤ ( ♯ ‘ 𝐶 ) ) ) |