This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop (which is an edge at index J ) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lppthon.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | lppthon | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 〈“ 𝐽 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 〈“ 𝐴 𝐴 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lppthon.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ 〈“ 𝐴 𝐴 ”〉 = 〈“ 𝐴 𝐴 ”〉 | |
| 3 | eqid | ⊢ 〈“ 𝐽 ”〉 = 〈“ 𝐽 ”〉 | |
| 4 | 1 | lpvtx | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 | simpl3 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) ∧ 𝐴 = 𝐴 ) → ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) | |
| 6 | eqid | ⊢ 𝐴 = 𝐴 | |
| 7 | eqneqall | ⊢ ( 𝐴 = 𝐴 → ( 𝐴 ≠ 𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 𝐴 ≠ 𝐴 → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) ∧ 𝐴 ≠ 𝐴 ) → { 𝐴 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 10 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 11 | 2 3 4 4 5 9 10 1 | 1pthond | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 〈“ 𝐽 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 〈“ 𝐴 𝐴 ”〉 ) |