This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon . (Contributed by AV, 6-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2pthnloop.i | |- I = ( iEdg ` G ) |
|
| Assertion | 2pthnloop | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthnloop.i | |- I = ( iEdg ` G ) |
|
| 2 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 3 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 4 | 2 3 | syl | |- ( F ( Paths ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
| 5 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 6 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | 7 1 | iswlkg | |- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) ) ) |
| 9 | 8 | anbi1d | |- ( G e. _V -> ( ( F ( Walks ` G ) P /\ Fun `' F ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) ) ) |
| 10 | 6 9 | bitrid | |- ( G e. _V -> ( F ( Trails ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) ) ) |
| 11 | pthdadjvtx | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
|
| 12 | 11 | ad5ant245 | |- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
| 13 | 12 | neneqd | |- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> -. ( P ` i ) = ( P ` ( i + 1 ) ) ) |
| 14 | ifpfal | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
|
| 15 | 14 | adantl | |- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
| 16 | fvexd | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` i ) e. _V ) |
|
| 17 | fvexd | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` ( i + 1 ) ) e. _V ) |
|
| 18 | neqne | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( P ` i ) =/= ( P ` ( i + 1 ) ) ) |
|
| 19 | fvexd | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( I ` ( F ` i ) ) e. _V ) |
|
| 20 | prsshashgt1 | |- ( ( ( ( P ` i ) e. _V /\ ( P ` ( i + 1 ) ) e. _V /\ ( P ` i ) =/= ( P ` ( i + 1 ) ) ) /\ ( I ` ( F ` i ) ) e. _V ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
|
| 21 | 16 17 18 19 20 | syl31anc | |- ( -. ( P ` i ) = ( P ` ( i + 1 ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 22 | 21 | adantl | |- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 23 | 15 22 | sylbid | |- ( ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ -. ( P ` i ) = ( P ` ( i + 1 ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 24 | 13 23 | mpdan | |- ( ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 25 | 24 | ralimdva | |- ( ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) /\ 1 < ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 26 | 25 | ex | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) -> ( 1 < ( # ` F ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
| 27 | 26 | com23 | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ F ( Paths ` G ) P ) /\ ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
| 28 | 27 | exp31 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( F ( Paths ` G ) P -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
| 29 | 28 | com24 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
| 30 | 29 | 3impia | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( ( ( Fun `' F /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
| 31 | 30 | exp4c | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) -> ( Fun `' F -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
| 32 | 31 | imp | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) /\ Fun `' F ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) |
| 33 | 10 32 | biimtrdi | |- ( G e. _V -> ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
| 34 | 33 | com24 | |- ( G e. _V -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( F ( Trails ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
| 35 | 34 | com14 | |- ( F ( Trails ` G ) P -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( G e. _V -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) ) ) |
| 36 | 35 | 3imp | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( G e. _V -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
| 37 | 36 | com12 | |- ( G e. _V -> ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
| 38 | 5 37 | biimtrid | |- ( G e. _V -> ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
| 39 | 38 | 3ad2ant1 | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) ) |
| 40 | 4 39 | mpcom | |- ( F ( Paths ` G ) P -> ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
| 41 | 40 | pm2.43i | |- ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) |
| 42 | 41 | imp | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |