This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcredom | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ≼ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) | |
| 2 | tgdom | ⊢ ( 𝑥 ∈ TopBases → ( topGen ‘ 𝑥 ) ≼ 𝒫 𝑥 ) | |
| 3 | simpr | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) | |
| 4 | nnenom | ⊢ ℕ ≈ ω | |
| 5 | 4 | ensymi | ⊢ ω ≈ ℕ |
| 6 | domentr | ⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) | |
| 7 | 3 5 6 | sylancl | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ℕ ) |
| 8 | pwdom | ⊢ ( 𝑥 ≼ ℕ → 𝒫 𝑥 ≼ 𝒫 ℕ ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝒫 𝑥 ≼ 𝒫 ℕ ) |
| 10 | rpnnen | ⊢ ℝ ≈ 𝒫 ℕ | |
| 11 | 10 | ensymi | ⊢ 𝒫 ℕ ≈ ℝ |
| 12 | domentr | ⊢ ( ( 𝒫 𝑥 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≈ ℝ ) → 𝒫 𝑥 ≼ ℝ ) | |
| 13 | 9 11 12 | sylancl | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝒫 𝑥 ≼ ℝ ) |
| 14 | domtr | ⊢ ( ( ( topGen ‘ 𝑥 ) ≼ 𝒫 𝑥 ∧ 𝒫 𝑥 ≼ ℝ ) → ( topGen ‘ 𝑥 ) ≼ ℝ ) | |
| 15 | 2 13 14 | syl2an2r | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → ( topGen ‘ 𝑥 ) ≼ ℝ ) |
| 16 | breq1 | ⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( topGen ‘ 𝑥 ) ≼ ℝ ↔ 𝐽 ≼ ℝ ) ) | |
| 17 | 15 16 | syl5ibcom | ⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) = 𝐽 → 𝐽 ≼ ℝ ) ) |
| 18 | 17 | expimpd | ⊢ ( 𝑥 ∈ TopBases → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ≼ ℝ ) ) |
| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ≼ ℝ ) |
| 20 | 1 19 | sylbi | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ≼ ℝ ) |