This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. Note that this is not equivalent to E* x E* y ph . See also 2mo . This is the analogue of 2eu4 for existential uniqueness. (Contributed by Wolf Lammen, 26-Oct-2019) Reduce dependencies on axioms. (Revised by Wolf Lammen, 3-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2mo2 | |- ( ( E* x E. y ph /\ E* y E. x ph ) <-> E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv | |- ( E. z E. w ( A. x ( E. y ph -> x = z ) /\ A. y ( E. x ph -> y = w ) ) <-> ( E. z A. x ( E. y ph -> x = z ) /\ E. w A. y ( E. x ph -> y = w ) ) ) |
|
| 2 | jcab | |- ( ( ph -> ( x = z /\ y = w ) ) <-> ( ( ph -> x = z ) /\ ( ph -> y = w ) ) ) |
|
| 3 | 2 | 2albii | |- ( A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y ( ( ph -> x = z ) /\ ( ph -> y = w ) ) ) |
| 4 | 19.26-2 | |- ( A. x A. y ( ( ph -> x = z ) /\ ( ph -> y = w ) ) <-> ( A. x A. y ( ph -> x = z ) /\ A. x A. y ( ph -> y = w ) ) ) |
|
| 5 | 19.23v | |- ( A. y ( ph -> x = z ) <-> ( E. y ph -> x = z ) ) |
|
| 6 | 5 | albii | |- ( A. x A. y ( ph -> x = z ) <-> A. x ( E. y ph -> x = z ) ) |
| 7 | alcom | |- ( A. x A. y ( ph -> y = w ) <-> A. y A. x ( ph -> y = w ) ) |
|
| 8 | 19.23v | |- ( A. x ( ph -> y = w ) <-> ( E. x ph -> y = w ) ) |
|
| 9 | 8 | albii | |- ( A. y A. x ( ph -> y = w ) <-> A. y ( E. x ph -> y = w ) ) |
| 10 | 7 9 | bitri | |- ( A. x A. y ( ph -> y = w ) <-> A. y ( E. x ph -> y = w ) ) |
| 11 | 6 10 | anbi12i | |- ( ( A. x A. y ( ph -> x = z ) /\ A. x A. y ( ph -> y = w ) ) <-> ( A. x ( E. y ph -> x = z ) /\ A. y ( E. x ph -> y = w ) ) ) |
| 12 | 3 4 11 | 3bitri | |- ( A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> ( A. x ( E. y ph -> x = z ) /\ A. y ( E. x ph -> y = w ) ) ) |
| 13 | 12 | 2exbii | |- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> E. z E. w ( A. x ( E. y ph -> x = z ) /\ A. y ( E. x ph -> y = w ) ) ) |
| 14 | df-mo | |- ( E* x E. y ph <-> E. z A. x ( E. y ph -> x = z ) ) |
|
| 15 | df-mo | |- ( E* y E. x ph <-> E. w A. y ( E. x ph -> y = w ) ) |
|
| 16 | 14 15 | anbi12i | |- ( ( E* x E. y ph /\ E* y E. x ph ) <-> ( E. z A. x ( E. y ph -> x = z ) /\ E. w A. y ( E. x ph -> y = w ) ) ) |
| 17 | 1 13 16 | 3bitr4ri | |- ( ( E* x E. y ph /\ E* y E. x ph ) <-> E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) |