This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one x and exactly one y "). Naively one might think (incorrectly) that it could be defined by E! x E! y ph . See 2eu1 for a condition under which the naive definition holds and 2exeu for a one-way implication. See 2eu5 and 2eu8 for alternate definitions. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu4 | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu | ⊢ ( ∃! 𝑥 ∃ 𝑦 𝜑 ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 2 | df-eu | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 ↔ ( ∃ 𝑦 ∃ 𝑥 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) | |
| 3 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) | |
| 4 | 2 3 | bianbi | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) |
| 5 | 1 4 | anbi12i | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑥 ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 6 | anandi | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑥 ∃ 𝑦 𝜑 ) ∧ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) ) | |
| 7 | 2mo2 | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 9 | 5 6 8 | 3bitr2i | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |