This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modabs | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 mod 𝐵 ) mod 𝐶 ) = ( 𝐴 mod 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | anim1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 3 | 2 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 5 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
| 8 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 10 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 13 | rpre | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 16 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) | |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| 19 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) | |
| 20 | 9 12 15 18 19 | ltletrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) < 𝐶 ) |
| 21 | modid | ⊢ ( ( ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐶 ) ) → ( ( 𝐴 mod 𝐵 ) mod 𝐶 ) = ( 𝐴 mod 𝐵 ) ) | |
| 22 | 4 7 20 21 | syl12anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 mod 𝐵 ) mod 𝐶 ) = ( 𝐴 mod 𝐵 ) ) |