This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of vertex D in a graph G with only one hyperedge E (not being a loop) is 1 if D is incident with the edge E . (Contributed by AV, 2-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hevtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 1hevtxdg0.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | ||
| 1hevtxdg0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1hevtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| 1hevtxdg1.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | ||
| 1hevtxdg1.n | ⊢ ( 𝜑 → 𝐷 ∈ 𝐸 ) | ||
| 1hevtxdg1.l | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) ) | ||
| Assertion | 1hevtxdg1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 2 | 1hevtxdg0.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 3 | 1hevtxdg0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 4 | 1hevtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 5 | 1hevtxdg1.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | |
| 6 | 1hevtxdg1.n | ⊢ ( 𝜑 → 𝐷 ∈ 𝐸 ) | |
| 7 | 1hevtxdg1.l | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) ) | |
| 8 | 1 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , 𝐸 〉 } ) |
| 9 | dmsnopg | ⊢ ( 𝐸 ∈ 𝒫 𝑉 → dom { 〈 𝐴 , 𝐸 〉 } = { 𝐴 } ) | |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → dom { 〈 𝐴 , 𝐸 〉 } = { 𝐴 } ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝐸 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐸 ) ) | |
| 13 | 12 | breq2d | ⊢ ( 𝑥 = 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝐸 ) ) ) |
| 14 | 2 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 ) |
| 15 | 5 14 | eleqtrrd | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 16 | 13 15 7 | elrabd | ⊢ ( 𝜑 → 𝐸 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 17 | 3 16 | fsnd | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 19 | 1 | adantr | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) | |
| 21 | 19 20 | feq12d | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ { 〈 𝐴 , 𝐸 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 22 | 18 21 | mpbird | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 23 | 4 2 | eleqtrrd | ⊢ ( 𝜑 → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
| 25 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 26 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 27 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 28 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 29 | 25 26 27 28 | vtxdlfgrval | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 30 | 22 24 29 | syl2anc | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 31 | rabeq | ⊢ ( dom ( iEdg ‘ 𝐺 ) = { 𝐴 } → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 34 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) | |
| 35 | 34 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 36 | 35 | rabsnif | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) , { 𝐴 } , ∅ ) |
| 37 | 1 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) = ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) ) |
| 38 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉 ) → ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) = 𝐸 ) | |
| 39 | 3 5 38 | syl2anc | ⊢ ( 𝜑 → ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) = 𝐸 ) |
| 40 | 37 39 | eqtrd | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) = 𝐸 ) |
| 41 | 6 40 | eleqtrrd | ⊢ ( 𝜑 → 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 42 | 41 | iftrued | ⊢ ( 𝜑 → if ( 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) , { 𝐴 } , ∅ ) = { 𝐴 } ) |
| 43 | 36 42 | eqtrid | ⊢ ( 𝜑 → { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝐴 } ) |
| 44 | 43 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝐴 } ) ) |
| 45 | hashsng | ⊢ ( 𝐴 ∈ 𝑋 → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 46 | 3 45 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 47 | 44 46 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ) |
| 49 | 30 33 48 | 3eqtrd | ⊢ ( ( 𝜑 ∧ dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 1 ) |
| 50 | 11 49 | mpdan | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 1 ) |