This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of vertex D in a graph G with only one hyperedge E (not being a loop) is 1 if D is incident with the edge E . (Contributed by AV, 2-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hevtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 1hevtxdg0.v | |- ( ph -> ( Vtx ` G ) = V ) |
||
| 1hevtxdg0.a | |- ( ph -> A e. X ) |
||
| 1hevtxdg0.d | |- ( ph -> D e. V ) |
||
| 1hevtxdg1.e | |- ( ph -> E e. ~P V ) |
||
| 1hevtxdg1.n | |- ( ph -> D e. E ) |
||
| 1hevtxdg1.l | |- ( ph -> 2 <_ ( # ` E ) ) |
||
| Assertion | 1hevtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` D ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 2 | 1hevtxdg0.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 3 | 1hevtxdg0.a | |- ( ph -> A e. X ) |
|
| 4 | 1hevtxdg0.d | |- ( ph -> D e. V ) |
|
| 5 | 1hevtxdg1.e | |- ( ph -> E e. ~P V ) |
|
| 6 | 1hevtxdg1.n | |- ( ph -> D e. E ) |
|
| 7 | 1hevtxdg1.l | |- ( ph -> 2 <_ ( # ` E ) ) |
|
| 8 | 1 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom { <. A , E >. } ) |
| 9 | dmsnopg | |- ( E e. ~P V -> dom { <. A , E >. } = { A } ) |
|
| 10 | 5 9 | syl | |- ( ph -> dom { <. A , E >. } = { A } ) |
| 11 | 8 10 | eqtrd | |- ( ph -> dom ( iEdg ` G ) = { A } ) |
| 12 | fveq2 | |- ( x = E -> ( # ` x ) = ( # ` E ) ) |
|
| 13 | 12 | breq2d | |- ( x = E -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` E ) ) ) |
| 14 | 2 | pweqd | |- ( ph -> ~P ( Vtx ` G ) = ~P V ) |
| 15 | 5 14 | eleqtrrd | |- ( ph -> E e. ~P ( Vtx ` G ) ) |
| 16 | 13 15 7 | elrabd | |- ( ph -> E e. { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 17 | 3 16 | fsnd | |- ( ph -> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 18 | 17 | adantr | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 19 | 1 | adantr | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( iEdg ` G ) = { <. A , E >. } ) |
| 20 | simpr | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> dom ( iEdg ` G ) = { A } ) |
|
| 21 | 19 20 | feq12d | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } <-> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
| 22 | 18 21 | mpbird | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 23 | 4 2 | eleqtrrd | |- ( ph -> D e. ( Vtx ` G ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> D e. ( Vtx ` G ) ) |
| 25 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 26 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 27 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 28 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 29 | 25 26 27 28 | vtxdlfgrval | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } /\ D e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` D ) = ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 30 | 22 24 29 | syl2anc | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( VtxDeg ` G ) ` D ) = ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 31 | rabeq | |- ( dom ( iEdg ` G ) = { A } -> { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } = { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } = { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) |
| 33 | 32 | fveq2d | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 34 | fveq2 | |- ( x = A -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` A ) ) |
|
| 35 | 34 | eleq2d | |- ( x = A -> ( D e. ( ( iEdg ` G ) ` x ) <-> D e. ( ( iEdg ` G ) ` A ) ) ) |
| 36 | 35 | rabsnif | |- { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } = if ( D e. ( ( iEdg ` G ) ` A ) , { A } , (/) ) |
| 37 | 1 | fveq1d | |- ( ph -> ( ( iEdg ` G ) ` A ) = ( { <. A , E >. } ` A ) ) |
| 38 | fvsng | |- ( ( A e. X /\ E e. ~P V ) -> ( { <. A , E >. } ` A ) = E ) |
|
| 39 | 3 5 38 | syl2anc | |- ( ph -> ( { <. A , E >. } ` A ) = E ) |
| 40 | 37 39 | eqtrd | |- ( ph -> ( ( iEdg ` G ) ` A ) = E ) |
| 41 | 6 40 | eleqtrrd | |- ( ph -> D e. ( ( iEdg ` G ) ` A ) ) |
| 42 | 41 | iftrued | |- ( ph -> if ( D e. ( ( iEdg ` G ) ` A ) , { A } , (/) ) = { A } ) |
| 43 | 36 42 | eqtrid | |- ( ph -> { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } = { A } ) |
| 44 | 43 | fveq2d | |- ( ph -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { A } ) ) |
| 45 | hashsng | |- ( A e. X -> ( # ` { A } ) = 1 ) |
|
| 46 | 3 45 | syl | |- ( ph -> ( # ` { A } ) = 1 ) |
| 47 | 44 46 | eqtrd | |- ( ph -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 48 | 47 | adantr | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 49 | 30 33 48 | 3eqtrd | |- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( VtxDeg ` G ) ` D ) = 1 ) |
| 50 | 11 49 | mpdan | |- ( ph -> ( ( VtxDeg ` G ) ` D ) = 1 ) |