This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ||
| 0ring.0 | |||
| 0ring01eq.1 | |||
| Assertion | 0ring1eq0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ||
| 2 | 0ring.0 | ||
| 3 | 0ring01eq.1 | ||
| 4 | eldif | ||
| 5 | 0ringnnzr | ||
| 6 | eqid | ||
| 7 | 6 2 3 | 0ring01eq | |
| 8 | 7 | eqcomd | |
| 9 | 8 | ex | |
| 10 | 5 9 | sylbird | |
| 11 | 10 | imp | |
| 12 | 4 11 | sylbi |