This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring with only one element, i.e. a zero ring, the zero and the identity element are the same. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 0ring01eq | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 0 = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0ring01eq.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 2 | 0ring | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
| 5 | 1 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 6 | eleq2 | ⊢ ( 𝐵 = { 0 } → ( 1 ∈ 𝐵 ↔ 1 ∈ { 0 } ) ) | |
| 7 | elsni | ⊢ ( 1 ∈ { 0 } → 1 = 0 ) | |
| 8 | 7 | eqcomd | ⊢ ( 1 ∈ { 0 } → 0 = 1 ) |
| 9 | 6 8 | biimtrdi | ⊢ ( 𝐵 = { 0 } → ( 1 ∈ 𝐵 → 0 = 1 ) ) |
| 10 | 5 9 | syl5com | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 = { 0 } → 0 = 1 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝐵 = { 0 } → 0 = 1 ) ) |
| 12 | 4 11 | mpd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 0 = 1 ) |