This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 21-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pthon.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0pthonv | |- ( N e. V -> E. f E. p f ( N ( PathsOn ` G ) N ) p ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pthon.v | |- V = ( Vtx ` G ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | snex | |- { <. 0 , N >. } e. _V |
|
| 4 | 2 3 | pm3.2i | |- ( (/) e. _V /\ { <. 0 , N >. } e. _V ) |
| 5 | 1 | 0pthon1 | |- ( N e. V -> (/) ( N ( PathsOn ` G ) N ) { <. 0 , N >. } ) |
| 6 | breq12 | |- ( ( f = (/) /\ p = { <. 0 , N >. } ) -> ( f ( N ( PathsOn ` G ) N ) p <-> (/) ( N ( PathsOn ` G ) N ) { <. 0 , N >. } ) ) |
|
| 7 | 6 | spc2egv | |- ( ( (/) e. _V /\ { <. 0 , N >. } e. _V ) -> ( (/) ( N ( PathsOn ` G ) N ) { <. 0 , N >. } -> E. f E. p f ( N ( PathsOn ` G ) N ) p ) ) |
| 8 | 4 5 7 | mpsyl | |- ( N e. V -> E. f E. p f ( N ( PathsOn ` G ) N ) p ) |