This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
0pthonv
Metamath Proof Explorer
Description: For each vertex there is a path of length 0 from the vertex to itself.
(Contributed by Alexander van der Vekens , 3-Dec-2017) (Revised by AV , 21-Jan-2021)
Ref
Expression
Hypothesis
0pthon.v
⊢ V = Vtx ⁡ G
Assertion
0pthonv
⊢ N ∈ V → ∃ f ∃ p f N PathsOn ⁡ G N p
Proof
Step
Hyp
Ref
Expression
1
0pthon.v
⊢ V = Vtx ⁡ G
2
0ex
⊢ ∅ ∈ V
3
snex
⊢ 0 N ∈ V
4
2 3
pm3.2i
⊢ ∅ ∈ V ∧ 0 N ∈ V
5
1
0pthon1
⊢ N ∈ V → ∅ N PathsOn ⁡ G N 0 N
6
breq12
⊢ f = ∅ ∧ p = 0 N → f N PathsOn ⁡ G N p ↔ ∅ N PathsOn ⁡ G N 0 N
7
6
spc2egv
⊢ ∅ ∈ V ∧ 0 N ∈ V → ∅ N PathsOn ⁡ G N 0 N → ∃ f ∃ p f N PathsOn ⁡ G N p
8
4 5 7
mpsyl
⊢ N ∈ V → ∃ f ∃ p f N PathsOn ⁡ G N p