This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: fvco4i lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00lsp | ⊢ ∅ = ( LSpan ‘ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 3 | 00lss | ⊢ ∅ = ( LSubSp ‘ ∅ ) | |
| 4 | eqid | ⊢ ( LSpan ‘ ∅ ) = ( LSpan ‘ ∅ ) | |
| 5 | 2 3 4 | lspfval | ⊢ ( ∅ ∈ V → ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) ) |
| 6 | 1 5 | ax-mp | ⊢ ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
| 7 | eqid | ⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) | |
| 8 | 7 | dmmpt | ⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } |
| 9 | rab0 | ⊢ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∅ | |
| 10 | 9 | inteqi | ⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∩ ∅ |
| 11 | int0 | ⊢ ∩ ∅ = V | |
| 12 | 10 11 | eqtri | ⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = V |
| 13 | vprc | ⊢ ¬ V ∈ V | |
| 14 | 12 13 | eqneltri | ⊢ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
| 15 | 14 | rgenw | ⊢ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
| 16 | rabeq0 | ⊢ ( { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ ↔ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V ) | |
| 17 | 15 16 | mpbir | ⊢ { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ |
| 18 | 8 17 | eqtri | ⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
| 19 | mptrel | ⊢ Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) | |
| 20 | reldm0 | ⊢ ( Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) → ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) |
| 22 | 18 21 | mpbir | ⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
| 23 | 6 22 | eqtr2i | ⊢ ∅ = ( LSpan ‘ ∅ ) |