This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: fvco4i lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00lsp | |- (/) = ( LSpan ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | base0 | |- (/) = ( Base ` (/) ) |
|
| 3 | 00lss | |- (/) = ( LSubSp ` (/) ) |
|
| 4 | eqid | |- ( LSpan ` (/) ) = ( LSpan ` (/) ) |
|
| 5 | 2 3 4 | lspfval | |- ( (/) e. _V -> ( LSpan ` (/) ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) ) |
| 6 | 1 5 | ax-mp | |- ( LSpan ` (/) ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
| 7 | eqid | |- ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
|
| 8 | 7 | dmmpt | |- dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } |
| 9 | rab0 | |- { b e. (/) | a C_ b } = (/) |
|
| 10 | 9 | inteqi | |- |^| { b e. (/) | a C_ b } = |^| (/) |
| 11 | int0 | |- |^| (/) = _V |
|
| 12 | 10 11 | eqtri | |- |^| { b e. (/) | a C_ b } = _V |
| 13 | vprc | |- -. _V e. _V |
|
| 14 | 12 13 | eqneltri | |- -. |^| { b e. (/) | a C_ b } e. _V |
| 15 | 14 | rgenw | |- A. a e. ~P (/) -. |^| { b e. (/) | a C_ b } e. _V |
| 16 | rabeq0 | |- ( { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } = (/) <-> A. a e. ~P (/) -. |^| { b e. (/) | a C_ b } e. _V ) |
|
| 17 | 15 16 | mpbir | |- { a e. ~P (/) | |^| { b e. (/) | a C_ b } e. _V } = (/) |
| 18 | 8 17 | eqtri | |- dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) |
| 19 | mptrel | |- Rel ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) |
|
| 20 | reldm0 | |- ( Rel ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) -> ( ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) <-> dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) <-> dom ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) ) |
| 22 | 18 21 | mpbir | |- ( a e. ~P (/) |-> |^| { b e. (/) | a C_ b } ) = (/) |
| 23 | 6 22 | eqtr2i | |- (/) = ( LSpan ` (/) ) |